SOLUTION OF A PROBLEM IN TRANSIENT GROUNDWATER
FILTRATION BY MONTE CARLO METHODS

/
V. N. Emikh

This method is used mainly for steady-state filtration {1, 2], but a transient-state problem for petro-
leum hydraulics has been solved in this way [3]. Here I consider a typical case of transient infiltration
of groundwater with a free surface; some special features are noted.

1. General. For the region G (x>0, y>0, t>0 we consider the equation

LOSLYR YR AR YSO) (1.1)

subject to the boundary conditions

k(z, y, 0) = Hy, h(0,y, 0) =h(z,0,8) = H

(1.2)

The problem of (1.1) and (1.2) is that of transient flow of groundwater in an unpressurized stratum
having a horizontal impermeable layer. The infiltration region is a square bounded on two sides by mutual-
ly perpendicular channels, which coincide with the positive semiaxes of the (x, y) coordinate system. In
(1.1), k and p are the coefficients of filtration and water release of the ground, t is time, and h is the
height of the free surface of the groundwater above the impermeable layer. The groundwater level is Hy
at t=0 throughout the infiltration region and subsequently alters when the level in the channels changes in-
stantaneously to Hj.

This is known as Kamenskii's problem [4] and is convenient for the Monte Carlo method in that the
results can be compared with those from various finite~-difference schemes [4, 5].

The method has so far been developed only for linear differential equations, so we linearize (1.1)
by putting h=h* in the parentheses, in which h* is some mean ordinate of the free surface in region G.
We divide G up via a net with steps of I in the spatial coordinates and 7 in time in such a way that the
nodes with zero values lie at the boundary of the region., We represent the derivatives in the linearized
equation as the ratios of finite differences [6] to get a system of equations whose detailed form is de-
pendent on the particular scheme.

2. Explicit Finite-Difference Scheme. In place of (1.1) we have the following system of equations
at the nodes of the net:

day a%y N
) Hi, Gos=1 + Tz"(Hi—x, ! + Hi+1, jis—1 +Hi, J=1, s-1 + Hi, F+1, s-1)

Hi,j,si(i— ]

/2-kh*-" (9 )
Ka— p i hhs=12..

Conditions (1.2) become

Hy ;o= H, Hy ;o =H; o = Hi
(2.2)
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Hy j,g 18 determined by the Monte Carlo method [1, 2, 7] by following a wandering particle from
node (i,j,s). FEach step is a transition from the given node to one of the adjacent nodes related by the dif-
ference scheme. Transition to an adjacent node occurs with a probability equal to the coefficient to H at
that node, and the relation between the H at the nodes should be solved for H at the starting node, as should
{2.1). The random walk ceases if the particle passes outside the region, and this imposes a penalty equal
to the value of the function at the exit point, while the particle starts again from node (i,j,s). Repetition
of this process gives a statistical estimate of the mathematical expectation of the penalty for node {i,j, s),
which has been shown [1, 7] to equal Hj,j, 5, which approximates h at the corresponding point. This can
be expressed via

Wi, sTr

R
Hy ;o= Qb0 H
r=1 (2,3)

)

in which Hy is the value of H at boundary node r (including the nodes of the initial layer), while bi,], s

is the probability of reaching boundary node r from node (i,j, s).

Steps ! and T are chosen on the basis of the stability condition for the explicit scheme, which is (see
chapter 1, §11, of [6]):

a2t/ <Y,

(2.4)
We put (compare [4])
wriE= 2.5)
and then (2.1) becomes
H j o= nl ot iy g oqt Hy g oq+Hy oy o) BTs=1,2,. .. 2.6)

Then (2.6) implies that the particle at each stage passes with a probability of 1/4 to one of the four
nodes of the previous time layer and after step s is in the initial layer if it has not passed before this into
one of the channels. Then this scheme means that the random walk started in time layer s certainly ends
not later than after s steps.

Violation of (2.4) within this scheme means that there is a negative probability of passing from a
node to one placed directly under it.

The random walk is performed as follows. The section [0.1] is divided into four parts, each cor-
responding to a certain event (passage of the wandering particle from a given node to one of the four ad-
jacent ones). The length of each section equals the probability of the corresponding event, this probability
being 1/4 for all events in this case. The particle passes to the adjacent node set by the value of the ran-
dom number 7 (0<n<1) produced by a generator, which is called at each step. These random numbers
must be uniformly distributed in the range 0-1. We used the No. 1 random-number generator of the M~20
computer (see Chapter V, §8 of [8]), and Table 1 shows that this meets the requirement well, in which A
is the interval and n is the total number of random numbers generated.

The problem of (2.2) and (2.6) was solved with the parameters used in [4]: k=5 m/day, u=0.086,
h*=H,=30 mm, H; =40 m,/ = 1000 m, 7=100 days, with the steps inl and 7 chosen in accordance with (2.5).

An important feature is the number N of steps that must be performed from node (i, j, s) for Hi,j, 3
to be determined with sufficient accuracy without excessive time consumption. The optimum N in any par-
ticular case should be determined by trial, but available theoretical estimates can be used to obtain a first
approximation. It is known (Chap. V, §2 of [7]) that the following is the N for which the error £is not ex-
ceeded with a probability 0.997 in calculating the mathematical expectation M of an independent random
variable §:

N = 9DE/ &2
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TABLE 1

A n =10 102 108 104 103 10

0—0.1 1 11 98 958 10025 99849
0.1—0.2 0 8 86 981 10057 100747
0.2—0.3 0 10 128 1088 10435 99929
0.3—0.4 1 1 101 1037 9901 100196
0.4—0.5 0 8 95 978 10005 99915
0.5—0.6 2 6 86 980 10118 100109
0.6—0.7 2 8 94 996 9926 100048
0.7—0.8 1 10 94 979 9881 99739
0.8—0.9 1 13 100 1044 10036 99480
0.9—1.0 2 15, 122 959 9916 99988

in which D¢ is the dispersion of £. In this problem £ takes the two values £;=30 m and £=40 m. If is
readily shown that the maximum dispersion corresponds to M =35 m; then the events £=£; and £ =£,
are equally probable, p (£,) = plé,)=0.5, We have

max DE = (30m — 35 m) 0.5 - (40 m — 35 m)® 0.5 = 25 m?
From max D¢ (which gives N with a margin of safety) and putting £-0.5 m, for example, we get

9.25m?
N = 0.25mE 900 2.7)

A program was written for the M-20 to find H at the diagonal points of the grid for several instants.
Table 2 gives results for t=1500 days. The last line is H from

¢
H, v, t)=H1_'_(H1—Ho)(D<2—fV—t)®<2—ayVE> (q) (C)=%S e‘"zdu>
0 (2.8)

which is the exact solution to (1.1) after linearization. Table 2 gives H (in m) at the {i, i} diagonal nodes
for t=1500 days, the top 2/3 of the table (for N of 10% and 10% via the explicit scheme, while the bottom
third (for N=10% via the inexplicit one (the quantities in parentheses are the deviations from the result
of (2.4) as % of the latter).

First we consider the part of the table containing the results from the explicit scheme,*

The quantities in the line marked (2.4) are the H calculated directly from that equation, while (2.8)
is the exact solution. The other lines in the table have this error mingled with the error from the Monte
Carlo method, and the latter is revealed by comparing the result for/ =1000 m and 7=100 days with that
from Kamenskii's scheme. '

We see that the error of the Monte Carlo method does not exceed 0.62% for N=100, as (2.7) indicates,
this error representing 0.2 m, i.e., being well within the limit set in choosing N. There is a tendency
for the error at N=10% to be less than that for N=10%, but the second and third nodes show fluctuations that
deviate from this trend.

The more closely spaced grid obeying (2.5) produces somewhat higher accuracy, as is clear from
the table, but the fluctuations tend to obscure the dependence of the error of approximation on the spacing,
though this error is [6] of the order of L2 + 1,

About 10 sec of machine time is needed to obtain a solution at one point for t=1500 days, I =1000 m,
and 7=100 days (the boundary). This time becomes minutes if the difference scheme is used directly, since
to obtain a value for the level at a point in the region at a given instant one has to calculate for all previous
time steps. This means that the Monte Carlo method can be recommended when the state of groundwaters
has to be predicted for a long time ahead. The choice ofl, 7, and N should be based on providing the re-
quired accuracy with reasonable economy in machine time. This means that it is undesirable to increase
N or reduce the grid spacing.

*All the calculations were performed by L. U. Kolner, graduate student at Novosibirsk University.
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TABLE 2

N | orw jedays| {1y | {22y | {38} ) (&A} (8} 1 {06} | {77}

108 | 1000 | 100 | 39.22 | 37.27 | 34.94 | 32,60 | 31.38 | 30.55 | 30.15

(0.023) | (0.035) | (0.198) | (0.616) | (0.045) | (0.199) { (0.294)
500 | 25| 39.32° | 37.13° | B4.64° | 32.70 | 31.27 — Z
250 | 6.95 | 39.10 | 37.40 | 34.74 | 32.46 | 3041 - -

106 {1000 | 100 | 39.224 | 37.165 | 34.940 | 32,750 | 31.396 | 30.583 | 30.213

(0.020) | (0.247) | (0.198) | (0.159) | (0.008) | (0.091) | (0.036)
500 | 25 | 39.130 | 37.215 | 34.614 | 32.640 | B1.345 — —
250 | 6.25 | 39.151 | 37.191 - = — — —

103 : 1000 | 100 | 39.09 36.76 34.46 32.86 31.50 30.72 30.35
1000 | 300 | 38.9%4 36.76 34.51 32.49 31.63 30.78 30.29
1000 | 700 | 38.70 36.43 33.85 32,57 31.50 30.89 30.47
1000 | 1500 | 38.40 36.18 33.43 32.20 31.44 30.87 30.50

@.4)} 1000 100] 39.229| 37.257 34.8711 32.802‘ 31.3%4 | 30.811 | 30.239

@.8) | 39.199 | s7.138 | 34.7210 | 32.673 | 31.314 | 30.552 | 30.219

3. Inexplicit Finite-Difference Scheme. A very simple scheme [6] may be used to represent (1.1)

as

Hi,j,S:bTHi,j,S—1+bz(Hi—1,j,'s+Hi+1,j,s+Hi.j—1,s+Hi:5+1vs) Gls=52..) (3.1)

Here

4kh¥v \ 7 kh*t
=4 =

(3.2

The structure of this scheme produces some features in the random walk. The particle at a node in
time layer s can pass to one of the four adjacent nodes in the same layer with a probability 4bl" while
the probability of reversion to the previous time layer is by.

As G takes the form of a square, the walk is unrestricted in two directions, and jump to the previous

time layer is only one of several possible events, so there is a danger that the walk may extend too long
in particular cases.

The distribution of the random numbers is such that the relative frequency of occurrence in the part
of the 0-1 range corresponding to jump to the previous layer is approximately proportional to the length of
that part. Then a particle starting from a certain node in layer s is predetermined to enter the initial

layer (or to escape from one of the boundaries before this) on completing v steps, whose mathematical
expectation IVLy is

My= S/br
Let tg be the instant corresponding to layer s. Then s=ty/7. From (3.2)

My=t (1+a*/B)/7 (3.3)

This inexplicit scheme is absolutely stable, so there is no need to consider (2.4) in choosing the step
sizes. As step 7 is increased with respect to time there occurs in accordance with (3.2) a redistribution of
the probabilities by and b, during which the former increases. This does not mean thatthe particle reaches
the boundary more rapidly as 7 increases, since it may recede from the boundary during the walk., More
definitely, (3.3) indicates that the possibility of escape to the initial layer increases with 7, and the reduc-
tion in bt is more than balanced by the reduction in the number of time layers between the given layer and
the initial one. The computation time is thus reduced as 7 increases, but this gain is obtained at the ex-
pense of a loss of accuracy due to increase in the error of approximation.
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This feature is reflected in the H from (3.1) of Table 2. The mean computation time per node for
the first seven nodes was about 30 sec for N=1000 and 7=100 days in the inexplicit scheme. This exceeds
the time in the explicit scheme, which also provides higher accuracy, and so the explicit one is to be
preferred.

4. Hydraulic Coupling with Adjacent Horizons, and Effects of Boreholes and Rock Inhomogeneity.
The essential features of the Monte Carlo method as applied in this case have already been presented [1, 2]
for steady-state flows, and they can be transferred to transient states.

If the horizon has a hydraulic coupling to an underlying pressurized layer via a band of thickness m
and filtration coefficient ky, the equation for h differs from (1.1) in the presence on the right of a term
ky/pm(Hsh), in which H, is the head in the underlying bed. The explicit scheme gives us the following
system of finite-difference equations:

4ot a’t '
Hi, js T (1 - _[2d_ (1)1:) Hi, 51 + 72_ (Hi—l,j, =1 + Hi—‘rl, 7,81 +
+ H; g, ot By jag, sq) +OTH:
(@=ky/pm, i, §,s=1,2,...) @.1)
Here there is a further possible event: entry to the underlying horizon (probability w). A similar
situation has been considered [1, 2] for finding the particle in the borehole node, at which the head is
given.

The following are values of H for {i,i} diagonal nodes with Hy=H;=30 m, N=1000, t~1500 days;
the other parameters and boundary conditions are as in Kamenskii's problem, while ki/m takes the
following values (day~) for the first, second, and third lines; 4x107%, 4x10~%, and 4x10-5,

Uy 42,20 3.3 &4 (5,5 {660 (7,7} {88

HMm=30.83 30.01 30.0 30.0 30.0 30.0 30.0 30.0
Hm=33.62 32.15 30.24 30.07  30.0 30.0 30.0 30.0
Hm==38.,06 36.37 33.17 3M.64 30.89  30.47  30.15 30.02

The exact values of t differ somewhat in each form, being multiples of 7, which in order to simplify
(4.1) was chosen from

{1 —datt/ B —at=0

Consider further the case where there is a borehole with a given flow rate. We distribute this rate
evenly over a square cell of areal? centered on the {i,j} node nearest to the borehold. We use the explicit
scheme and choose the step size in accordance with (2.5) to get for node {i,j}, which we call [1, 2] the
special one, that

H ;.

13

=1 (Hi_l, i, =1 + Hi+1, 7, 81 -+ Hi, =1, s~1 + Hi. J+1, s—1)—(T/WE)Q (s==1,2,...)

Equations of the form of (2. 6) apply for the other nodes.

Here the random walk has the feature that (1 /MZQ) Q=Q/600 m is subtracted from the sum of the ac-
cumulated penalty if the particle enters the special node, and the walk continues to exit at the boundary or
the initial layer.

The following are values of Hfor N=1000 with the borehole at the {3,5} node and having flow rates
of 1000 m3/sec (first line) and 10, 000 m3/sec (second line):

{1,1 2,2y 3,3 {44 {55 6,6 {71 &8 {9,9

Hm=239.132 36.982 34.356 32.220 30.846 30.343 30.077 30.034 30.028
Hm=38.712 35.115 20.450 24.437 24.955 27,941 29,419 29.880 30.023

If the rock is inhomogeneous, the probability of passage to adjacent nodes is related to the local k

around the initial node, and this varies, which complicates the calculation. In the explicit scheme, I and
7 should be chosen from the maximum k in accordance with (2.4).
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5. Conclusions. The Monte Carlo method has the following features as applied to transient flows.

1. The method has been developed for linear differential equations, so its use in unpressurized
infiltration is dependent on the availability of a suitable linearization.

2. The method has considerable advantages over finite-difference methods as regards time needed
when the requirement is for long-term prediction.

3. An adequate number of walks from node {i,j, s} may be employed with recording of the frequency
of entry to boundary node r to determine statistically the probability bi(f], ¢ of that event, which is depen-
d?rt on the grid steps, mean flow rate, and hydrogeological parameters of the stratum. The values of
by, j, s for all boundary nodes allows one to use (2.3) to calculate Hj j ¢ for various Hy if h* does not vary
when Hy is altered. Shvidler (§13 of [2]) has pointed out this possible use of (2.3) as a fundamental solu-
tion.
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